ALGEBRAIC CURVES EXERCISE SHEET 6

Unless otherwise specified, k is an algebraically closed field.

Exercise 1.

Let V, W be varieties and assume that W is affine.

- (1) Show that there is a bijection $Hom_{Var}(V,W) \simeq Hom_{k-alg}(\mathcal{O}(W),\mathcal{O}(V))$.
- (2) Show that there is a bijection $\mathcal{O}(V) \simeq Hom_{Var}(V, \mathbb{A}^1_k)$.
- (3) Show that $\mathcal{O}(\mathbb{P}^1_k) \simeq k$.
- (4) Show that $\mathcal{O}(\mathbb{P}_k^n) \simeq k$ for all $n \geq 1$.

Exercise 2.

Let $n \geq 1$ and $f \in k[x_1, \ldots, x_n]$.

- (1) Show that $\mathbb{A}^n_k V(f)$ is affine. What is its ring of regular functions?
- (2) Show that $\mathbb{A}_k^2 \{(0,0)\}$ is not affine. (Hint: compute the ring of regular functions).

Exercise 3.

Let $\varphi: V \to W$ be a morphism of affine varieties and $\varphi^{\sharp}: \Gamma(W) \to \Gamma(V)$ the corresponding morphism of coordinate rings. Let $P \in V$ and $Q = \varphi(P)$ and consider local rings $\mathcal{O}_P(V)$, $\mathcal{O}_Q(W)$ with maximal ideals $\mathfrak{m}_P, \mathfrak{m}_Q$. Show that φ^{\sharp} extends uniquely to a ring homomorphism $\mathcal{O}_Q(W) \to \mathcal{O}_P(V)$ and that $\varphi^{\sharp}(\mathfrak{m}_Q) \subseteq \mathfrak{m}_P$.

Exercise 4.

Let $n \geq 1$ and V a variety. We use projective coordinates x_i , $1 \leq i \leq n+1$ on \mathbb{P}^n_k . Suppose there exist an open cover $(U_i)_{1 \leq i \leq n+1}$ of V and morphisms of varieties $\varphi_i: U_i \to \{x_i \neq 0\} \subseteq \mathbb{P}^n_k, \ 1 \leq i \leq n+1$, such that $\forall i \neq j, \ (\varphi_i)_{|U_i \cap U_j} = (\varphi_j)_{|U_i \cap U_j}$. Show that there exists a unique morphism $\varphi: V \to \mathbb{P}^n_k$ such that $\varphi_{|U_i} = \varphi_i$. We say that φ is obtained by glueing the φ_i , $1 \leq i \leq n+1$.

Exercise 5. *

Let $f \in k[x_1, x_2, x_3]$ an irreducible form of degree 2 and consider $V_P(f) \subseteq \mathbb{P}^2_k$.

- (1) Show that, up to a linear change of coordinates, we can assume that $f = x_2^2 x_1x_3$. (Hint: remember we classified similar subvarieties of \mathbb{A}^2_k).
- (2) Show that the map:

$$\begin{array}{ccc} \mathbb{P}^1_k & \to & \mathbb{P}^2_k \\ (s:t) & \mapsto & (s^2:st:t^2) \end{array}$$

induces an isomorphism $\mathbb{P}^1_k \simeq V_P(f)$. (Hint: take a look locally in the standard affine opens of projective space and use exercise 4).